Fast Solution for Large-Scale 2-D Convection-Diffusion, Reacting Flows
نویسندگان
چکیده
2-D convection-diffusion, reacting flows in a single channel of catalytic monoliths are investigated. The fluid dynamics are modelled by a steady state, boundary-layer equations, which is a large system of parabolic partial differential equations (PDEs) with nonlinear boundary conditions arising from the coupling between the gas-phase and surface processes. The chemical processes are modelled using detailed chemistry. The PDEs are semi-discretized by a method of lines leading to a large-scale, structured differential algebraic equations (DAEs). The DAEs are solved using a tailored BDF code. We exploit the structure of the Jacobian and freeze the diffusion coefficients during approximation of Jacobian by the finite difference. By applying our approach, the computation times have been reduced by a factor of 4 to 10 and more depending on the particular problem.
منابع مشابه
CALTECH ASCI TECHNICAL REPORT 169 A nonstiff additive semi-implicit Runge-Kutta scheme for finite-rate reacting flows
A nonstiff additive semi-implicit third-order Runge-Kutta scheme suitable for integration of convection-diffusion-reaction equations with few diffusion dominated species is presented in this article. This scheme permits larger time steps than those required by explicit schemes and uses only one implicit stage and two explicit stages. The stability domain is analyzed and tests are carried out fo...
متن کاملA Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملSoret driven convection in a colloidal solution heated from above at very large solutal Rayleigh number.
Convection in a colloidal suspension with a large negative separation ratio psi is studied experimentally by heating from above. Shadowgraph observations at very large solutal Rayleigh numbers Rtilde; are reported as a function of time. Fast relaxation oscillations are reported for the root mean square value of the shadowgraph intensity. While pure fluids exhibit a transition to turbulent conve...
متن کاملA Filtering technique for System of Reaction Diffusion equations
We present here a fast parallel solver designed for a system of reaction convection diffusion equations. Typical applications are large scale computing of air quality models or numerical simulation of population models where several colonies compete. Reaction-Diffusion systems can be integrated in time by point-wise Newton iteration when all space dependent terms are explicit in the time integr...
متن کاملDevelopment of an Implicit Numerical Model for Calculation of Sub and Super Critical Flows
A two dimensional numerical model of shallow water equations was developed tocalculate sub and super-critical open channel flows. Utilizing an implicit scheme the steady stateequations were discretized based on control volume method. Collocated grid arrangement was appliedwith a SIMPLEC like algorithm for depth-velocity coupling. Power law scheme was used fordiscretization of convection and dif...
متن کامل